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What is control engineering? (a video)
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Driving the DC motors – Open-loop control

 Driving the DC motors using Pybench in Lab 5 is known as “open-loop control”
 Potentiometer set the required speed (as voltage value)
 The Pybench board running Python produces control signals including direction (A1, A2) 

and PWM duty cycle. It acts as the controller
 The TB6612 H-bridge chip drives the motors – it is the actuator
 The motor is the thing being controlled – we call this “the process” or ”the plant”
 The Hall effect sensors detect the speed and direction of the motor
 Problem: error in the desired speed setting vs the actual speed you get
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Problem 1: Uncertainty in system characteristic

 There are many problems with open-loop control.
 First, the two motor may not respond in the same way to the drive input signal PWM_A 

and PWM_B. (For example, the two gear boxes may present different resistance to the 
motor, and the magnet inside the motors may have different strength.)

 The consequence is that the two motors are not balanced and the Segway will not go 
in a straight line.

 This is an example of the variation and uncertainty in the system characteristic. In this 
case, the steady-state behaviour of each motor may be different.  It results in the actual 
speed of the two motors being different.

 One could use different gains to drive PWM_A and PWM_B to compensate for the 
difference in system characteristic.  But this does not solve all the problems.
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Problem 2: Disturbance and Noise

 Two other major problems exist:
1. Perturbation – the motor may go on uneven surface or there may be some 

obstacles in the way;
2. Sensor noise - The Hall effect sensors may not produce perfectly even pulses, 

the magnetic poles in the cylindrical magnet may not be evenly spaced.
 These two other factors will DIRECTLY affect the response of the system (i.e. 

the speed of the motor).
 Open-loop control cannot mitigate against these problems in any control 

systems.  
 We need to use feedback, or closed-loop control in order mitigate these 

problems.
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Closed-loop control with feedback

 In a closed-loop control system, we use a sensor to detect the parameter that we 
wish to control.  This parameter is also known as the “control variable”.

 We obtain the error signal e(t) by subtracting the actual parameter from the desired 
parameter (called the “set-point”).

 The controller then produces a drive signal to the actuator and to the plant 
depending on this error signal.

y(t)
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Negative vs Positive feedback
 Negative feedback example:  sensor of the control variable is SUBTRACTED from the 

desired parameter.  Here is a control system for dispensing insulin to a diabetic patient.
 Control system generally uses negative feedback.

Insulin 
depensing 

system

 A system could have positive feedback.  Here is a model for wage inflation.  Such a 
system will have its control parameter ever-increasing.  Such a system is not stable, 
meaning that it never reaches a stable final value. 

Wage 
inflation 
model
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Closed-loop system with disturbance & sensor noise

 Again all systems are not ideal and there can be perturbation and sensor noise.
 These are added to the insulin dispensing system which is under closed-loop control
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 We can represent a closed-loop system shown in previous slide (in time domain) in a 
mathematical form in the Laplace domain.

Block diagram model of a closed-loop system

 G(s) is the transfer function of the system 
we wish to control. 

 Gc(s) is the controller that we design in s-
domain.

 H(s) is the sensor characteristic.  

 R(s) is the desired parameter (e.g. a dc value, a step function or a ramp function).
 Y(s) is the actual output variable under control.
 We can simplify the system by assuming that H(s) = 1, and both perturbation and 

sensor noise are neglected for now (i.e. assumed to be zero).     

Laplace 
Transform

Simplified
model
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A video on open- & closed- loop systems
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 Here are some useful transformation in s-domain that helps with complexity reduction:

Block diagram transformations (1)
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Block diagram transformations (2)

H  X2

X2/G 𝑋! −𝐻×𝑋" =
𝑋"
𝐺

⟹ 𝑋!=
#!
$  +𝐻×𝑋"

⟹𝐺𝑋!= (1 + 𝐺𝐻)𝑋"

⟹𝑋"=
𝐺

1+ 𝐺𝐻 𝑋!
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Example of system reduction by transformation (1)

=
1 & 6
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Example of system reduction by transformation (2)

=
1 & 6
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Example of system reduction by transformation (3)

1 & 6

=
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A generic closed-loop control system

 The transfer function of the closed-loop control system from input R(s) to output Y(s) is (applying 
transforms 1 & 6):

𝑌(𝑠)
𝑅(𝑠) =

𝐺%(𝑠)𝐺(𝑠)
1 + 𝐺% 𝑠 𝐺 𝑠 𝐻(𝑠)

 Let us now consider a generic close loop system such as the motor or insulin pump control as 
shown here.



Lecture 15 Slide 17PYKC  7 March 2025 DE2 – Electronics 2

The concept of loop gain L(s)

 From the previous slide, we have the transfer function of a close-loop system as:

 The quantity:                                          is known as loop gain of the system.
 It is the transfer function (gain) if you break the feedback loop at the point of feedback, and 

calculate the gain around the loop as shown.
 This quantity turns out to be most important in a feedback system because it affects many 

characteristics and behaviour in such a system.
 We will consider why such a closed-loop system with feedback is beneficial in the next 

Lecture.

𝐿 𝑠 = 𝐺% 𝑠 𝐺 𝑠 𝐻(𝑠) 

𝑌(𝑠)
𝑅(𝑠) =

𝐺%(𝑠)𝐺(𝑠)
1 + 𝐺% 𝑠 𝐺 𝑠 𝐻(𝑠) =

𝐺%(𝑠)𝐺(𝑠)
1 + 𝐿(𝑠)
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Feedback makes system insensitive to G(s)

 Let us now assume that H(s) = 1 to simplify things.
 We have seen from the last lecture that the transfer function of this closed-loop system is:

 If                                                     then this term approaches 1!!
 In other words, the actual output Y(s) (e.g. motor speed) will track the desired input R(s) 

independent of G(s), our system behaviour:

𝑌(𝑠)
𝑅(𝑠) =

𝐺%(𝑠)𝐺(𝑠)
1 + 𝐺% 𝑠 𝐺 𝑠 =

𝐿(𝑠)
1 + 𝐿(𝑠)

𝐿 𝑠 = 𝐺% 𝑠 𝐺 𝑠 ≫ 1 

!(#)
%(#)

≈ 1   if 𝐺% 𝑠 𝐺 𝑠 ≫ 1 
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Feedback yields small steady-state error e(t)

 Let us suppose the input to the system is a step at t=0 with a magnitude of A: 𝑟 𝑡 = 𝐴𝑢 𝑡 .
 Then   𝑅 𝑠 = 𝐴 !

"  (because Laplace transform of u(t) is 1/s)
 We know that in this system, y(t) will track r(t) from the previous two slides.  The question is: 
 “After transient has died down, what is error e(t)?”
 To calculate this steady-state error, we need to use the final-value theorem, which states:

 Therefore, 

 So the steady-state error is reduced by a factor of (1 + L(0))

lim
&→(

𝑒 𝑡 = lim
)→*

𝑠𝐸 𝑠 = lim
)→*

𝑠
1

1 + 𝐿 𝑠 𝐴
1
𝑠 =

𝐴
1 + 𝐿(0)  

lim
&→(

𝑒 𝑡 = lim
)→*

𝑠𝐸 𝑠  
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Feedback reduces impact of perturbations

 Let us put back the perturbation p(t) to the system.
 Assume R(s) = 0, and the effect of perturbation P(s) on output Y(s) can be found by considering 

the expression for T(s) at the input to our system under control:

 In open-loop, 

 In closed-loop, the disturbance is reduced by the factor: 

𝑇 𝑠 = 𝑃 𝑠 − 𝑇 𝑠 𝐺 𝑠 𝐺+ 𝑠

⟹ 𝑇 𝑠 =
1

1 + 𝐿 𝑠 𝑃 𝑠 =
𝑌(𝑠)
𝐺(𝑠)

⟹ 𝑌 𝑠 =
𝐺(𝑠)

1 + 𝐿 𝑠 𝑃 𝑠
1

1 + 𝐿 𝑠

H(s) = 1

𝑌 𝑠 = 𝐺(𝑠)𝑃 𝑠
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Feedback introduces problem with sensor noise

 Let us put back the sensor noise n(t) to the system.
 Assume R(s) = 0, and the effect of N(s) on Y(s) can be found by considering the expression for 

S(s), the senor signal in the feedback path:

 In open-loop, sensor is not an issue.

 In closed-loop, we want  L(s) to be small in order to have good attenuation of the sensor noise.
 This is in contradiction to the previous two properties.  (We will consider this in more details later.)

𝑆 𝑠 = 𝑁 𝑠 −𝐻 𝑠 𝐺+ 𝑠 𝐺 𝑠 𝑆(𝑠)

⟹ 𝑆 𝑠 =
1

1 + 𝐿 𝑠 𝑁 𝑠

⟹ 𝑌 𝑠 = −𝐿 𝑠 𝑆 𝑠 = −
𝐿(𝑠)

1 + 𝐿 𝑠 𝑁 𝑠
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Practical process - Our DC Motors
 The two DC motors we use on the Segway may have very different characteristics.
 Here are plots of motor speed (in number of pulses per 100msec) vs PWM duty cycle 

for two typical motors:

20%

Gradient ≈	20 pulses/sec/PWM%50
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Step response of the motor
 Here is the plot of the step response of two typical motors.
 The time constant (time it takes to reach 63% of final speed) is around 0.2sec. 



Lecture 15 Slide 24PYKC  7 March 2025 DE2 – Electronics 2

Model of the motor – G(s)
 We can model the motor as having a transfer function:

𝐺 𝑠 =
𝐾,

𝜏,𝑠 + 1
 Km is the dc gain, which is the gradient of the plot in slide 6 (i.e. the gain of the system 

when s = 0, or steady-state).   Therefore Km = 20 pulses/sec/PWM%
 𝜏, is the time constant of the motor, which is estimated to be around 0.2sec in slide 7.
 Therefore:

 Assuming H(s) = 1, we now put this motor in a feedback loop with a controller Gc(s).

𝐺 𝑠 =
20

0.2𝑠 + 1
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Proportional feedback
 Let us start with a simple controller with 𝐺% 𝑠 = 𝐾-, where 𝐾- is a constant.
  From transforms 1 & 6, we get:

 Therefore the closed-loop transfer function is:

𝑌(𝑠)
𝑅(𝑠) =

𝐿(𝑠)
1 + 𝐿(𝑠) =

𝐾-
20

0.2𝑠 + 1

1 +𝐾-
20

0.2𝑠 + 1

𝑌(𝑠)
𝑅(𝑠) =

20𝐾%
1 + 20𝐾% + 0.2𝑠

=
20𝐾%/(1 + 20𝐾%)

1 + 0.2
1 + 20𝐾%

𝑠
=

𝐾&
1 + 𝜏'𝑠

𝐾& =
20𝐾%

1 + 20𝐾%

𝜏'=
0.2

1 + 20𝐾%
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How are things improved with proportional feedback?
 For our system, loop gain is L(s) = 20Kp for s=0.  Assuming Kp = 5, we get a steady-

state gain of:
 

 The steady-state error for a step input of magnitude A (i.e. A * u(t) is:

 Perturbation is also reduced by this factor (see slide 6):

!
𝑌(𝑠)
𝑅(𝑠) #$%

= !
𝐿(𝑠)

1 + 𝐿(𝑠)	 #$%
=

20𝐾-
1 + 20𝐾-

=
100
101

= 0.99

3𝐸 𝑠
"()

= 4
1

1 + 𝐿(𝑠)	 "()
𝐴 =

1
1 + 𝐿 0

𝐴 = 0.01𝐴

𝑌(𝑠) = 0.01𝑃(𝑠)
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Three Big Ideas
1. Closed-loop negative feedback system has the general form (with example):

3. A closed-loop system reduces steady-state errors and impact of perturbation by a 
factor of  (1 + L(s)), where L(s) is the loop gain.

2. Adding the controller GC(s) and closing the loop changes the system transfer function 
from G(s) to:

Y s
R s

=
𝐿(𝑠)

1 + 𝐿(𝑠)
, where	 𝐿 𝑠 = 𝐺1 𝑠 𝐺(𝑠)


