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What is control engineering? (a video)
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Driving the DC motors — Open-loop control
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Driving the DC motors using Pybench in Lab 5 is known as “open-loop control”
Potentiometer set the required speed (as voltage value)

The Pybench board running Python produces control signals including direction (A1, A2)
and PWM duty cycle. It acts as the controller

The TB6612 H-bridge chip drives the motors — it is the actuator

The motor is the thing being controlled — we call this “the process” or "the plant”
The Hall effect sensors detect the speed and direction of the motor

Problem: error in the desired speed setting vs the actual speed you get
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Problem 1: Uncertainty in system characteristic

Battery

| Il PWM A
Il' / Dh::\(:::;\ B SensorA ———> Speed A
L AAA-

Desired t Pybench
speed r(t)

(Python) Motor ; d dA
. — Sensor B > Spee BfSpee A .
PWM_B Driver B

€ There are many problems with open-loop control.

¢ First, the two motor may not respond in the same way to the drive input signal PWM_A
and PWM_B. (For example, the two gear boxes may present different resistance to the
motor, and the magnet inside the motors may have different strength.)

€ The consequence is that the two motors are not balanced and the Segway will not go
in a straight line.

€ This is an example of the variation and uncertainty in the system characteristic. In this
case, the steady-state behaviour of each motor may be different. It results in the actual
speed of the two motors being different.

€ One could use different gains to drive PWM_A and PWM_B to compensate for the
difference in system characteristic. But this does not solve all the problems.
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Problem 2: Disturbance and Noise
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€ Two other major problems exist:

1. Perturbation — the motor may go on uneven surface or there may be some
obstacles in the way;

2. Sensor noise - The Hall effect sensors may not produce perfectly even pulses,
the magnetic poles in the cylindrical magnet may not be evenly spaced.

¢ These two other factors will DIRECTLY affect the response of the system (i.e.
the speed of the motor).

¢ Open-loop control cannot mitigate against these problems in any control
systems.

¢ We need to use feedback, or closed-loop control in order mitigate these
problems.
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Closed-loop control with feedback
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€ In a closed-loop control system, we use a sensor to detect the parameter that we
wish to control. This parameter is also known as the “control variable”.

€ We obtain the error signal e(t) by subtracting the actual parameter from the desired
parameter (called the “set-point”).

€ The controller then produces a drive signal to the actuator and to the plant
depending on this error signal.
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Negative vs Positive feedback

¢ Negative feedback example: sensor of the control variable is SUBTRACTED from the
desired parameter. Here is a control system for dispensing insulin to a diabetic patient.

4 Control system generally uses negative feedback. .:}:::d
Insulin Error | Controller Actuator Plant oo
depensing Desired * C\ e(t) V(t)‘ Pump [ Human - B°:’t L
system glucose level N/ | Amplifier | and body cleu cg:;
r(t) valve function &
level y(t)
Measured Sensor
Glucose level Blood
sugar [*
Actual Process sensor
Origin R > Prices of
wages - Industry goods
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inflation
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€ A system could have positive feedback. Here is a model for wage inflation. Such a
system will have its control parameter ever-increasing. Such a system is not stable,
meaning that it never reaches a stable final value.
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Closed-loop system with disturbance & sensor noise
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4 Again all systems are not ideal and there can be perturbation and sensor noise.
€ These are added to the insulin dispensing system which is under closed-loop control
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Block diagram model of a closed-loop system

¢ We can represent a closed-loop system shown in previous slide (in time domain) in a
mathematical form in the Laplace domain. et "

. . E ontroller A
® G(s) is the transfer function of the system e + et i) Fpump]_ "4 riomes Blood at

we W|Sh to Control glucose level _ Amplifier and + body clertaln
' r(t) valve function Ii\:::lc;f(;
¢ G(s) is the controller that we design in s-
. M d Sensor
domal n. GIu::ss:::vel Blood & Noise
¢ H(s) is the sensor characteristic. el O ni
¢ R(s) is the desired parameter (e.g. a dc value, a step function or a ramp function).

_ Laplace
€ Y(s) is the actual output variable under control. Transform
¢ We can simplify the system by assuming that H(s) = 1, and both perturbation and

sensor noise are neglected for now (i.e. assumed to be zero).
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A video on open- & closed- loop systems
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Block diagram transformations (1)

€ Here are some useful transformation in s-domain that helps with complexity reduction:

Transformation Original Diagram Equivalent Diagram
1. Combining blocks in cascade X, X, X, X, X,
—| G\(s) ——>| Gys) —> — GG —>

or

Xy X5
el GG | e
2. Moving a summing point X, + X3 X, - X3
behind a block —» G —> — G —>
X2 X‘_’
G [
3. Moving a pickoff point X, X5 X, X,
ahead of a block —» G > > ¢ >
X, X,
R +— G [¢—
4. Moving a pickoff point X, X> X, X
behind a block —> G [—> —p G &
X| ‘ X| ‘ l
G
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Block diagram transformations (2)

Transformation Original Diagram Equivalent Diagram
S. Moving a summing point X, + X; X, + X+
ahead of a block G -> G >
1 X2
Xo G
6. Eliminating a feedback loop X, + Xa X, G X
G T > —2
- | + GH
H
A2
Xl - HXXZ - —
X, LG
G = X;= 2 +HXX;
= (X;=(1+GH)X,
u (v en)
= X,= X
> \1+GH/
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Example of system reduction by transformation (1)
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Example of system reduction by transformation (2)
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Example of system reduction by transformation (3)
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A generic closed-loop control system

€ Let us now consider a generic close loop system such as the motor or insulin pump control as

shown here.

R(s) ==

controller

E(s)

—> G.(s) —p

process

G(s)

feedback

H(s)

Y(s)

€ The transfer function of the closed-loop control system from input R(s) to output Y(s) is (applying

transforms 1 & 6):

Y(s) _ Gc(s5)G(s)

R(s) 1+ G.(s)G(s)H(s)
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The concept of loop gain L(s)

controller process

E(s)

+
R(s) —»Q—» G.(s) |—b G(s) > Y(s)
=z C
1 Lis) = Qe()GlsIHls) feedback

H(s) <

€ From the previous slide, we have the transfer function of a close-loop system as:

Y(s) _ G(s)G(s)  _ Ge(s)G(s)
R(s) 1+G.(s)G(s)H(s) 1+L(s)

¢ The quantity: L(s) = G.(s)G(s)H(s) is known as loop gain of the system.
€ ltis the transfer function (gain) if you break the feedback loop at the point of feedback, and
calculate the gain around the loop as shown.

€ This quantity turns out to be most important in a feedback system because it affects many
characteristics and behaviour in such a system.

€ We will consider why such a closed-loop system with feedback is beneficial in the next
Lecture.
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Feedback makes system insensitive to G(s)

E(s) Controller

R(s) *+
'_9 " G.(s) | '

Process

G (s)

Y(s)
—

€ Let us now assume that H(s) = 1 to simplify things.

€ We have seen from the last lecture that the transfer function of this closed-loop system is:

Y(s) _ G(s)G(s) _  L(s)
R(s) 1+G.(s)G(s) 1+L(s)

& If L(s)=0G.(s)G(s) »>1 then this term approaches 1!!

4 In other words, the actual output Y(s) (e.g. motor speed) will track the desired input R(s)

independent of G(s), our system behaviour:

YO o1 it G()G(s) > 1
R(s)
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Feedback yields small steady-state error e(t)

E(s) Controller Process Y(s)

R(s) * e
'_Q " G.(s) | "l G

€ Let us suppose the input to the system is a step at t=0 with a magnitude of A: r(t) = Au(t).
€ Then R(s) = A% (because Laplace transform of u(t) is 1/s)
€ We know that in this system, y(t) will track r(t) from the previous two slides. The question is:

“After transient has died down, what is error e(t)?”
€ To calculate this steady-state error, we need to use the final-value theorem, which states:

lim e(t) = limsE(s)
t—oo s—0

L 2 Therefore, 1 1 A
s

fim e(®) =l sEG) =1 s 127545 ~ T+ 1)

t—oo

€ So the steady-state error is reduced by a factor of (1 + L(0))
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Feedback reduces impact of perturbations

Perturbation
E P(s)
'Or  controller 1 Process
Set-point + E(s) + Y(s)
s
R(s) =~ "| G.(s) @, ~ | Gls) ’
) Syst'em
input
Sensor T(s)
H(s)=1 [&=

€ Let us put back the perturbation p(t) to the system.

€ Assume R(s) = 0, and the effect of perturbation P(s) on output Y(s) can be found by considering
the expression for T(s) at the input to our system under control:
T(s) = P(s) =T(s)G(s)Gc(s)

¢ Inopen-loop, Y(s) = G(s)P(s) = T(s) = - 1L( )P( 5) = Zg%
=Y(s) = 1f—(Lz )P( s)

€ In closed-loop, the disturbance is reduced by the factor: 1
1+ L(s)
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Feedback introduces problem with sensor noise

Error  controller Process
Set-point + E(s) Y(s)
R(s) _? " G = Gls)
Feedback Sensg(r s)ignal +Senslc\j(rsr;oise
s
His) |F -+

€ Let us put back the sensor noise n(t) to the system.
€ Assume R(s) = 0, and the effect of N(s) on Y(s) can be found by considering the expression for

S(s), the senor signal in the feedback path:
S(s) = N(s) — H(s)Gc(s)G(s)S(s)

€ In open-loop, sensor is not an issue. — S(s) = 1 N(s)
1+ L
+ L(s) 1)
= Y(s) = —L(s)S(s) = — 1+ L(s) N(s)

4 In closed-loop, we want L(s) to be small in order to have good attenuation of the sensor noise.
€ This is in contradiction to the previous two properties. (We will consider this in more details later.)
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Practical process - Our DC Motors

€ The two DC motors we use on the Segway may have very different characteristics.
€ Here are plots of motor speed (in number of pulses per 100msec) vs PWM duty cycle

for two typical motors:

Transfer function of Motor A& B
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Step response of the motor

€ Here is the plot of the step response of two typical motors.
€ The time constant (time it takes to reach 63% of final speed) is around 0.2sec.

Transient Response of Motor - 0% to 75% duty cycle
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Model of the motor — G(s)

€ We can model the motor as having a transfer function: K,,
G(s) =
TmsS +1

¢ K, is the dc gain, which is the gradient of the plot in slide 6 (i.e. the gain of the system

when s = 0, or steady-state). Therefore K, = 20 pulses/sec/PWM%
€ 1, is the time constant of the motor, which is estimated to be around 0.2sec in slide 7.
€ Therefore: 20

G(s) =
0.2s+1

¢ Assuming H(s) = 1, we now put this motor in a feedback loop with a controller G4(s).

controller

Desired speed motor Actual Speed
+ E(s) Ky
Rs) —— —> G.(5) F— (O =" > Y0
sensor
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Proportional feedback

¢ Let us start with a simple controller with G.(s) = K, where K,, is a constant.

: 20
¢ From transforms 1 & 6, we get: Y (s) _ L(s) _ Kp 554 —
R(s) 1+L(s) 20
1+ Ky 5251
€ Therefore the closed-loop transfer function is:
20K
Y(s) 20K,  20K,/(1+20K,) K Ke = To70%
R(s)_1+20Kp+0.25_1+( 0.2 )S_l-l-TCS P
T+ 20K,

[ 02
o= \1+20kK,

controller PWM

Vp0t5k X 2000/4096 value motor ( )
b E(s) 20 Y(S) o eg
R(s) —t@—; G, (s) = K, = 2s 11 ﬁ(pmses/sec)
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How are things improved with proportional feedback?

€ For our system, loop gain is L(s) = 20Kp for s=0. Assuming Kp = 5, we get a steady-
state gain of:

R(s)

Y(s)

s=0

L(s)
1+ L(s)

s=0

20K, 100
1+20K, 101

€ The steady-state error for a step input of magnitude A (i.e. A * u(t) is:

E(s)

1

s=0  1+L(s)

A=T710

s=0

A=0.014

€ Perturbation is also reduced by this factor (see slide 6):

Y(s) = 0.01P(s)

V,otsk X 2000/4096

R(S) e

controller PWM
value motor
+ E(s) 20 Y(s) Speed
=K. | G(s) = —p JPEE
_’_Q_’ Ge(8)=Kp =" 02s+1 (pulses/sec)
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Three Big Ideas

1. Closed-loop negative feedback system has the general form (with example):

E(s) Controller Process Y(s)

R(s) *+ _
'_9' " G.(s) | "l &)

2. Adding the controller G¢(s) and closing the loop changes the system transfer function
from G(s) to:
Y(s)  L(s)

R(s) 1+L(s)’

where L(s) = G.(s)G(s)

3. A closed-loop system reduces steady-state errors and impact of perturbation by a
factor of (1 + L(s)), where L(s) is the loop gain.
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